Department of Higher Education University of Computer Studies, Yangon

Third Year (B.C.Tech.)
Final Examination
Electronics I (CT 304)
September, 2018

Answer all questions.

Time allowed: $\mathbf{3}$ hours

1(a) Find V_{DS} and V_{GS} in Fig 1(a). When $\mathrm{I}_{\mathrm{D}}=8 \mathrm{~mA}$.
(10 marks)
(b) Graphically determine the Q-point for the circuit in Fig1(a) using the transfer characteristic curve in Figure 1(b).
(10 marks)

2(a) For the unloaded amplifier in Fig 2(a), find $\mathrm{V}_{\mathrm{GS}}, \mathrm{I}_{\mathrm{D}}, \mathrm{V}_{\mathrm{DS}}$ and the rms output voltage V_{ds}. $I_{D(\text { on })}=8 \mathrm{~mA}$ at $\mathrm{V}_{\mathrm{GS}}=12 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}(\mathrm{th})}=4 \mathrm{~V}$ and $\mathrm{g}_{\mathrm{m}}=4500 \mu \mathrm{~S}$.
(10 marks)
(b) From datasheet $I_{D S S}=3 \mathrm{~mA}, \mathrm{~V}_{\mathrm{GS}(\text { off })}=-6 \mathrm{~V}$ maximum and $\mathrm{g}_{\mathrm{m} 0}=5000 \mu \mathrm{~S}$. Using these value, determine the forward transconductance for $\mathrm{V}_{\mathrm{GS}}=-4 \mathrm{~V}$ and find I_{D} at this point.
(10 marks)

Fig 2(a)

3(a) If a signal voltage of 10 mVrms is applied to each amplifier in Fig-3(a), what are the output voltages and what is their phase relationship with inputs?
(b) Determine $A_{o l}$ for the following values of f. Assume $f_{\text {c(ol) })}=200 \mathrm{~Hz}$ and $A_{o l(\text { mid })}=80000$.
(i) $f=2 \mathrm{~Hz}$
(ii) $f=10 \mathrm{~Hz}$
(iii) $f=100 \mathrm{~Hz}$
(iv) $f=2500 \mathrm{~Hz}$

Fig 3(a-i)
(10 marks)

Fig 3(a-ii)

(aii)

4(a) Determine the weight of each input voltage for the scaling adder in Fig4 (a) and find the output voltage.
(10 marks)
(b) Determine the output voltage of the op-amp differentiator in Fig. 4(b) for the triangularwave input shown.
(10 marks)

5(a) Determine the critical frequency of the Sallen-Key high-pass filter in Fig 5(a), and set the value of R_{1} for an approximate Butterworth response. ($\mathrm{DF}=1.414$)
(b) Determine the center frequency, maximum gain, and bandwidth for the filter in Fig. 5(b).
(10 marks)

